Zur Geschichte der Datenverarbeitung – Reader zur WBT-Serie
Zur Geschichte der Datenverarbeitung – Reader zur WBT-Serie

Schlüsselwörter: Datenverarbeitung, Historie der Datenverarbeitung, Computergenerationen, Prozessorgenerationen, Zahlensysteme: Dezimal-, Binär- und Heximal-System, Digitale Signalverarbeitung
A Zur Einordnung der WBT-Serie

Die WBT-Serie richtet sich an Interessenten des Themenbereiches „Zur Geschichte der Datenverarbeitung“.

Für Ihr Selbststudium per WBT müssen Sie einen Internet-Zugang haben – entweder auf Ihren eigenen PCs, auf den PCs im JLU-Hochschulrechenzentrum, in den JLU-Bibliotheken oder dem PC-Pool des Fachbereichs.
B Die Web-Based-Trainings

Der Stoff zu diesem Thema ist in Lerneinheiten zerlegt worden und wird durch eine Serie von Web-Based-Trainings (WBT) vermittelt. Mit Hilfe der WBT kann der Stoff im Eigenstudium erarbeitet werden. Die WBT bauen inhaltlich aufeinander auf und sollten daher in der angegeben Reihenfolge absolviert werden.

<table>
<thead>
<tr>
<th>WBT-Nr.</th>
<th>WBT-Bezeichnung</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zur Geschichte der Datenverarbeitung</td>
<td>45 Min.</td>
</tr>
<tr>
<td>2</td>
<td>Zahlensysteme und Informationsdarstellung</td>
<td>45 Min.</td>
</tr>
</tbody>
</table>

Tab. 1: Übersicht der WBT-Serie

Die Inhalte der einzelnen WBT werden nachfolgend in diesem Dokument gezeigt. Alle WBT stehen Ihnen rund um die Uhr online zur Verfügung. Sie können jedes WBT beliebig oft durcharbeiten. In jedem WBT sind enthalten:

- Vermittlung des Lernstoffes,
- Interaktive Übungen zum Lernstoff,
- Abschließende Tests zum Lernstoff.

Wenn Sie ein WBT vollständig durchgearbeitet haben, werden Ihre Testergebnisse individuell für Sie in Ihrem E-Campus-Bereich festgehalten. So können Sie jederzeit erkennen, welches WBT Sie wann, wie oft und mit welchen Testergebnissen absolviert haben.
Inhaltsverzeichnis

A Zur Einordnung der WBT-Serie ... I
B Die Web-Based-Trainings .. II
Inhaltsverzeichnis ... III
Abbildungsverzeichnis .. V
Tabellenverzeichnis ... VI

1 Zur Geschichte der Datenverarbeitung 1
 1.1 Anfänge der Datenverarbeitung 1
 1.1.1 Einleitung .. 1
 1.1.2 Wieso brauchen wir Datenverarbeitung?......................... 1
 1.1.3 Treiber der Datenverarbeitung 1
 1.1.4 Datenverarbeitung – Begriffe 2
 1.1.5 Historische Vordenker ... 3
 1.1.6 Elektronische Rechenmaschinen 4
 1.1.7 Pioniere der Datenverarbeitung 5
 1.1.8 Zeitstrahl der frühen Rechenmaschinen 6
 1.2 Computergenerationen .. 7
 1.2.1 Die 1. Generation (1945 – 1958) 7
 1.2.2 Die 2. Generation (1959 – 1964) 8
 1.2.5 Die aktuelle Generation (ab 2000) 11
 1.2.6 Zeitstrahl der Computergenerationen 12
 1.3 Prozessorgenerationen .. 12
 1.3.1 Die Welt der Prozessoren .. 12
 1.3.2 4- und 8-Bit Prozessoren ... 13
 1.3.3 16-Bit Prozessoren ... 13
 1.3.4 32-Bit Prozessoren .. 13
 1.3.5 64-Bit Prozessoren .. 14
 1.3.6 Prozessoren für mobile Geräte 14
 1.3.7 Worauf wir bauen können .. 15
 1.4 Unternehmerische Meilensteine 15
 1.4.1 1972: SAP .. 15
 1.4.2 1974: Altair 8800 .. 17
 1.4.3 1975: Microsoft .. 17
Inhaltsverzeichnis

1.4.4 1976: Apple ... 18
1.4.5 1981: IBM ... 19
1.4.6 1995: AltaVista ... 19
1.4.7 1998: Google ... 20
1.4.8 Bis Morgen! ... 21

2 Zahlensysteme und Informationsdarstellung ... 22
 2.1 Zahlensysteme ... 22
 2.1.1 Einleitung ... 22
 2.1.2 Was sind Zahlensysteme? ... 22
 2.2 Stellenwertsysteme ... 24
 2.2.1 Das Dezimalsystem .. 24
 2.2.2 Das Binärsystem ... 25
 2.2.3 Das Hexadezimalsystem .. 25
 2.3 Übungsaufgaben Stellenwertsysteme .. 27
 2.3.1 Sie sind an der Reihe! .. 27
 2.3.2 Testaufgaben zum Umrechnen 27
 2.4 Informationsdarstellung .. 27
 2.4.1 Digitale Signalverarbeitung mit dem Binär-Code 27
 2.4.2 Warum wir digitale Signale benutzen 28
 2.4.3 8 Bit ergeben 1 Byte ... 28
 2.4.4 Vom Nummerncode zu Schriftzeichen: ASCII 29
 2.4.5 ASCII-Codierung .. 29
 2.4.6 Der Unicode: Alle Schriften vereint 30
 2.4.7 Bild-Codierung mit Code-Tabelle 30
 2.4.8 Vielen Dank für Ihre Aufmerksamkeit! 31
 2.4.9 Abschlusstest 1 .. 31

Anhang: Lösungen der Abschlusstests .. XI
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb. 1</td>
<td>Zeitstrahl der frühen Rechenmaschinen</td>
<td>7</td>
</tr>
<tr>
<td>Abb. 2</td>
<td>Zeitstrahl der Computergenerationen</td>
<td>13</td>
</tr>
<tr>
<td>Abb. 3</td>
<td>Zeitstrahl der Intel-Prozessoren</td>
<td>13</td>
</tr>
<tr>
<td>Abb. 4</td>
<td>ARM Prozessoren für mobile Endgeräte</td>
<td>15</td>
</tr>
<tr>
<td>Abb. 5</td>
<td>Zeitstrahl Windows-Betriebssysteme</td>
<td>18</td>
</tr>
<tr>
<td>Abb. 6</td>
<td>Windows-Versionen im Überblick</td>
<td>18</td>
</tr>
<tr>
<td>Abb. 7</td>
<td>Zeitstrahl Googles Errungenschaften</td>
<td>20</td>
</tr>
<tr>
<td>Abb. 8</td>
<td>Beispiel des Additionssystems</td>
<td>22</td>
</tr>
<tr>
<td>Abb. 9</td>
<td>Beispiel für die Funktionsweise des Dezimalsystems</td>
<td>23</td>
</tr>
<tr>
<td>Abb. 10</td>
<td>Beispiel für die Funktionsweise des Binärsystems</td>
<td>24</td>
</tr>
<tr>
<td>Abb. 11</td>
<td>Beispiel für die Funktionsweise des Hexadezimalsystems</td>
<td>25</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis

Tab. 1: Übersicht der WBT-Serie .. II
Tab. 2: Abschlusstest 1 .. 32
Tab. 3: Lösungen Abschlusstest 1 .. XII
1 Zur Geschichte der Datenverarbeitung

1.1 Anfänge der Datenverarbeitung

1.1.1 Einleitung

Eddy Dataskus:

Wie schön, dass Sie den Weg in mein kleines Hobbymuseum gefunden haben. In den verschiedenen Räumen werden Sie einiges über die Historie der Datenverarbeitung erfahren.

Ich zeige Ihnen heute in einem Rundgang durch mein Museum, warum das Thema der Datenverarbeitung interessant für Sie ist, obwohl Sie weder Historiker noch Informatiker sind. Lassen Sie uns also beginnen.

Folgen Sie mir bitte!

1.1.2 Wieso brauchen wir Datenverarbeitung?

Eddy Dataskus:

2018 haben wir circa 2,5 Trillionen Bytes pro Tag erzeugt, eine schwer vorstellbare Zahl. Dies entspricht etwa der Speicherkapazität von 36 Millionen iPads und die Tendenz der Datenmassen ist weiter steigend.

Es liegt nahe, dass Menschen schon allein durch diese große Masse an Daten nicht mehr in der Lage sind, diese auszuwerten oder gar zu merken. Deshalb helfen uns Maschinen dabei die Daten zu verarbeiten.

1.1.3 Treiber der Datenverarbeitung

Eddy Dataskus:

Natürlich haben wir diese Maschinen nicht zum Spaß erfunden, sondern sie erfüllen alle einen bestimmten Zweck.

Klicken Sie doch kurz auf die Bilder, um Beispiele für die Treiber der Datenverarbeitung näher kennenzulernen:

1. **Statistik**: Quantitative Datenmengen in Größen-ordnungen, die kein Mensch mehr überblicken kann, abgeschliffen durch Analysemethoden. Aber auch Volkszählungen können durch maschinelle Datenverarbeitung erleichtert werden.

4. **Astronomie**: Die Erforschung der "unendlichen Welten" erfordert komplizierte und aufwendige Berechnungen, auch hier kommen wichtige Datenverarbeitungssysteme zum Einsatz.

1.1.4 Datenverarbeitung – Begriffe

Eddy Datakus:

Sie haben feststellen können, dass Datenverarbeitung wichtig ist. Sie wurden vor allem durch rechenintensive Vorgänge vorangetrieben, wie beim Militär oder der Astronomie.

Hier möchte ich Ihnen nun einen Überblick darüber geben, welche verschiedenen Definitionen und Begriffe es zur Datenverarbeitung gibt. Halten wir dennoch fest:

Daten sind erst durch ihre Verarbeitung sinnvoll nutzbar, um diese Verarbeitung so effizient wie möglich durchzuführen, nutzen wir Datenverarbeitungssysteme.

1. **Daten**: Daten stellen Informationen (das heißt Angaben über Sachverhalte und Vorgänge) aufgrund bekannter oder unterstellter Abmachungen in einer maschinell verarbeitbaren Form dar.

2. **Datenverarbeitung**: Datenverarbeitung ist jede Tätigkeit, die sich mit der Eingabe, Ausgabe, Verknüpfung oder sonstigen Ordnung von Daten befasst.
3. Datenverarbeitungssysteme: Ein Datenverarbeitungssystem ist eine Funktions-
einheit (z. B. Computer) zur Verarbeitung von Daten, wobei als Verarbeitung die
Durchführung mathematischer, umformender, übertragender oder speichernder
Operationen definiert ist.

1.1.5 Historische Vordenker

Eddy Datakus:

Wir wissen nun, was Datenverarbeitung ist und wozu wir diese benötigen. Wir wissen
allerdings noch nicht, wie wir heute dazu in der Lage sind, große Mengen an Daten zu
verarbeiten. Natürlich haben die Datenverarbeitungssysteme eine Entwicklung durchge-
macht und diese startet sogar noch vor der Erfindung der Glühbirne. Heute haben ja sogar
die Laptops Tastaturbeleuchtung! Wie dem auch sei... Klickt doch einfach auf die But-
tons, dann gebe ich euch einen kleinen Einblick wie alles begann.

Wie beginnt also unsere Reise zu den heutigen Computern? Wir starten mit den mecha-
nischen Rechenmaschinen. Wozu dienten diese vorzeitlich anmaßenden Maschinen?
Wilhelm Schickard (1692 - 1635) baute seine sogenannte Rechenuhr, um astronomische
Berechnungen durchzuführen. Die Rechenuhr konnte addieren und subtrahieren, ein Glo-
cken-schlag deutete sogar darauf hin, wenn der "Speicher" überlief. Das alles bereits
1624, zu dieser Zeit wurde gerade New York von den Niederländern als Kolonie gegrün-
det.

Haben Sie schon einmal von der Programmiersprache Pascal gehört? Der Namensgeber
lebte ebenfalls im 17. Jahrhundert und konstruierte die mechanische Rechenmaschine für
seinen Vater, der Steuerbeamter war. Die sogenannte Pascaline konnte einfache Additio-
nen und Subtraktionen durchführen. Blaise Pascal (1623 - 1662) war nicht nur ein hilf-
reicher Sohn, sondern auch ein französischer Mathematiker, Physiker, Literat und christ-
licher Philosoph.

Wegbereitend für die heutigen Rechner war jedoch Gottfried Wilhelm Leibniz (1646 -
1716). Er entdeckte, dass Rechen-prozesse mit dem binären Zahlensystem umsetzbar wa-
ren. Ein Prinzip, dass sich 230 Jahre später als sehr hilfreich herausstellen sollte. Seine
1673 vorgestellte Rechenmaschine konnten nicht nur Addieren und Subtrahieren, sondern
beherrschte auch die Multiplikation und Division. Gottfried Wilhelm Leibniz war ein
deutscher Philosoph, Mathematiker, Jurist, Historiker und politischer Berater der frühen Aufklärung.

1.1.6 Elektronische Rechenmaschinen

Eddy Dataskus:

Im Folgenden werden wir uns mit einigen bedeutenden Persönlichkeiten der Datenverarbeitung beschäftigen. Dank Ihnen sind wir heute in der Lage, frei programmierbare Computer zu betreiben, Digitalrechner zu bauen, wissen um die Leistungsstärke der Großrechner und können sowohl Programme als auch Daten im selben Speicher speichern. Ich finde es immer wieder interessant, wozu wir heute durch unsere Technik in der Lage sind.
Stellen Sie sich doch einmal vor, Sie müssten alle mathematischen Berechnungen noch am Abakus durchführen. Wir könnten uns von unserer modernen Welt sofort verabschieden.

Im nächsten Raum werde ich Ihnen deshalb diese Pioniere vorstellen.

1.1.7 Pioniere der Datenverarbeitung

- Konrad Zuse war ein deutscher Bauingenieur, Erfinder und Unternehmer (Zuse KG). Er baute 1941 die Z3, ein programmgesteuertes elektromechanisches Rechengerät mit Relaistechnik. Die Z3 war die erste frei programmierbare, auf dem binären Zahlensystem basierende, funktionsfähige Rechenmaschine der Welt. Darüber war es möglich eine Tastatur anzuschließen, während der Rechenoperation zu interagieren und sowohl eine Pipeline an Operationen aufzubauen als auch diese parallel auszuführen.

- John Vincent Atanasoff war ein US-amerikanischer Computerpionier bulgarischer Abstammung. 1937 baute er zusammen mit dem Doktoranden Clifford Berry einen der ersten Digitalrechner, ein Atanasoff-Berry-Computer (ABC). Atanasoff formulierte vier Prinzipien für seinen digitalen Computer:
 1. Er wird Elektrizität und Elektronik als Medium benutzen...
 2. Er wird auf dem binären System beruhen...
 3. Er wird Kondensatoren als Speicher benutzen und wird einen regenerativen Prozess verwenden, um Fehler bei Stromausfällen zu vermeiden...
 4. Er wird "Rechnen durch direkte logische Handlungen und nicht durch Aufzählungen wie bei analogen Rechnern".

1.1.8 Zeitstrahl der frühen Rechenmaschinen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Gerät</th>
</tr>
</thead>
<tbody>
<tr>
<td>1624</td>
<td>Schickard – Rechenuhr</td>
</tr>
<tr>
<td>1645</td>
<td>Pascal – mechanische Rechenmaschine</td>
</tr>
<tr>
<td>1672</td>
<td>Leibniz – binäres Zahlensystem</td>
</tr>
<tr>
<td>1803</td>
<td>Jacquard – programmgesteuerte Webstühle</td>
</tr>
<tr>
<td>1833</td>
<td>Babbage – Universal-Rechenautomat</td>
</tr>
<tr>
<td>1890</td>
<td>Hollerith – elektronische Zähl- und Sortiermaschine</td>
</tr>
<tr>
<td>1904</td>
<td>Atanasoff – ABC</td>
</tr>
<tr>
<td>1913</td>
<td>Aiken – Harvard Mark I</td>
</tr>
<tr>
<td>1945</td>
<td>Neumann – Von-Neumann-Architektur</td>
</tr>
</tbody>
</table>

Abb. 1: Zeitstrahl der frühen Rechenmaschinen
1.2 Computergenerationen

1.2.1 Die 1. Generation (1945 – 1958)

Sie sind ja bereits im nächsten Raum!

Hier werde ich Ihnen zusammenfassend etwas über die Computergenerationen präsentie-
ren, die durch die Pioniere der Datenverarbeitung entwickelt werden konnten.

Bitte beachten Sie, dass es hier wie in jeder historischen Entwicklung immer um eine

Nun gut, ich lasse Ihnen mal etwas Raum, um sich umzusehen. Sprechen Sie mich bei
Fragen gerne an.

- **Beschreibung:** Computer der 1. Generation waren vorwiegend mit Elektronen-
röhren ausgestattet, die durch kilometerlange, manuell verdrahtete Leitungen mit-
einander verbunden waren. Diese Anlagen waren dadurch gekennzeichnet, dass
sie sehr kostspielig waren und enorm viel Platz beanspruchten. Die Rechner der
ersten Generation schafften etwa 1.000 Additionen pro Sekunde und wurden
hauptsächlich für wissenschaftliche Berechnungen eingesetzt. Die Computer der
ersten Generation hatten kein Betriebssystem. Da es zu dieser Zeit keine (höheren)
Programmiersprachen gab, erfolgte die Programmierung dieser Rechner über
Steckbrett, Lochstreifen und Lochkarten.

- **Merkmale:**
 - Technologie: Elektronenröhren
 - Geschwindigkeit: 0,02 MIPS
 - Speicherkapazität: 1 - 2 KByte
 - Software: Maschinensprache

- **Beispiele:**
 - ENIAC
 - Z22
 - UNIVAC
 - IBM650
• **SIEMENS704**

• **MIPS**: MIPS bedeutet "Million Instructions Per Second" und steht somit für die Rechengeschwindigkeit eines Computers.

• **Maschinensprache**: Die Gesamtheit aller Befehle, die eine CPU ausführen kann, nennt man „Maschinensprache“. Maschinensprache ist die einzige Sprache, die der Prozessor unmittelbar versteht.

1.2.2 **Die 2. Generation (1959 – 1964)**

• **Merkmale**:

 - Technologie: Transistoren und Kernspeicher
 - Geschwindigkeit: 0,1 MIPS
 - Speicherkapazität: 32 KByte
 - Software: Assembler, FORTRAN, Stapelbetrieb

• **Beispiele**:

 - IBM1400
 - AEG TR
 - CDC6600
 - SIEMENS2002
- **Transistor:** Ein Transistor ist ein elektronisches Halbleiterbauelement, das zum Schalten und Verstärken von elektrischen Strömen und Spannungen verwendet wird. Die Bezeichnung ist eine Kurzform für die englische Bezeichnung Transformation Resistor, die den Transistor als einen durch Strom steuerbaren Widerstand (engl. resistor) beschreiben soll.

- **Beschreibung:** Die Verwendung von SLT (Solid Logic Technology), eine von IBM entwickelte Mikroschalttechnik, brachte Mitte der 60er Jahre die 3. Computergeneration hervor. Charakteristisch für die 3. Generation von Rechnern war die sogenannte "Dialog-Verarbeitung". Darunter verstand man die Kommunikation mit dem Rechner über Tastatur und Bildschirm, um mit einem Softwareprogramm zu interagieren. Zu dieser Zeit hatten die Transistoren die Größe eines Salzkornes. Die Rechengeschwindigkeit dieser Computer betrug 500.000 Additionen pro Sekunde und die Speicherkapazität belief sich auf 400 Bit/cm³.

- **Merkmale:**
 - Technologie: ICs und Halbleiter-Speicher
 - Geschwindigkeit: 5 MIPS
 - Speicherkapazität: 1 - 2 MByte
 - Software: Hochsprachen, C, Pascal

- **Beispiele:**
 - IBM370
 - PDP11
 - SIEMENS7000
 - Cray-1

- **SLT:** Bei SLT handelte es sich um Keramikmodule mit integrierten Schaltkreisen. Im Vergleich mit einzelnen Transistoren war diese Technik zuverlässiger, platzsparender und schneller.

- **Merkmale:**
 - Technologie: Mikroprozessoren und Optische Speicher
 - Geschwindigkeit: 50 MIPS
 - Speicherkapazität: 8 - 32 MByte
 - Software: Sprachen der 4. Generation, Parallelisierung

- **Beispiele:**
 - PC
 - Cray X-MP
 - Sperry1100
 - VAX
 - IBM309x

Eddy Dataskus:
Ich glaube hier sollte ich noch einmal kurz einhaken.

Herr Moore ist im Übrigen auch Gründer von Intel. Er konnte also sein "Mooresches Gesetz" in eine bis heute lukrative Unternehmung umsetzen.

1.2.5 Die aktuelle Generation (ab 2000)

- **Beschreibung:** In der fünften Generation ist zu beobachten, dass die Mikroprozessoren immer leistungsfähiger werden und der Stromverbrauch dieser abnimmt. Die Sprache ist hier von dem Übergang der VLSI-Technologie (very large scale integration) zur ULSI-Technologie (ultra large scale integration). Die immer kleiner werdenden Chipsätze haben auch die Einführung mobiler Rechner und des Smartphones ermöglicht. Darüber hinaus wird erwartet, dass die Programmiersprachen sich in eine menschen-ähnliche Sprache entwickeln hin zur "Künstlichen Intelligenz".

- **Merkmale:**
 - Technologie: Pentium, PowerPC, Netze
 - Geschwindigkeit: ab 100 MIPS
 - Speicherkapazität: ab 1 GByte
 - Software: Netzsoftware, OO-Sprachen, C++, JAVA

- **Beispiele:**
 - Workstations
 - Hochleistungs-PCs
 - Mobile Computer
1.2.6 Zeitstrahl der Computergenerationen

Abb. 2: Zeitstrahl der Computergenerationen

1.3 Prozessorgenerationen

1.3.1 Die Welt der Prozessoren

Eddy Datakus:

Sie haben bereits einiges über die Anfänge der Datenverarbeitung erfahren. Nun wenden wir uns einer technischen Komponente eines jeden modernen Computers zu, die dessen Leistungsfähigkeit beschreibt.

Abb. 3: Zeitstrahl der Intel-Prozessorgenerationen
1.3.2 4- und 8-Bit Prozessoren

Eddy Dataskus:
Wir gehen hier explizit auf Intel durch den historischen Verlauf und durch den Erfinder Herrn Moore ein, obgleich es auch andere Hersteller gibt. Erwähnenswert ist hier sicherlich Intels größter Konkurrent AMD.

Der Intel 4004 wurde damals als „erster Computer auf einem einzigen Chip“ gefeiert.

Das Nachfolgemodell 8080 hingegen besaß bereits über 6.000 Transistoren und wurde zunächst in Ampeln verbaut. Durch den ersten Mikrocomputer Altair 8800 fand der 8080 jedoch Einzug in Unternehmen und bei Heimanwendern.

1.3.3 16-Bit Prozessoren

Eddy Dataskus:

1.3.4 32-Bit Prozessoren

Eddy Dataskus:
Mit dem 80386DX brach bei Intel das 32-Bit-Zeitalter an. Der Prozessor war mit 275.000 Transistoren bestückt und trotz seiner 32-Bit blieb der Prozessor kompatibel zu seinen 16-Bit Vorgängern.

1.3.5 64-Bit Prozessoren

Erst mit dessen Nachfolge-Prozessor, dem Core 2 Duo, realisierte Intel kurz nach AMD die Umstellung auf 64-Bit und bietet einen Prozessor mit 291 Mio. Transistoren an.

1.3.6 Prozessoren für mobile Geräte

Ich muss Sie in diesem Raum noch auf einen speziellen Sektor hinweisen, der unsere kleinen Alltagshelfer, die Smartphones betrifft.

![Abb. 4: ARM Prozessoren für mobile Endgeräte](image-url)
1.3.7 Worauf wir bauen können

Eddy Datauskus:

Wir haben gesehen, dass heutige Computergenerationen zum größten Teil auf der x86er Baureihe von Intel basieren.

Wir wissen also um die technische Komponente der Datenverarbeitung Bescheid.

Ich möchte Sie aber nun in einen Raum mitnehmen, der Ihnen einige wichtige Unternehmen zeigt. Diese sind natürlich nicht die einzigen herausragenden Firmen, sondern nur eine freie Auswahl.

1.4 Unternehmerische Meilensteine

1.4.1 1972: SAP

Eddy Datauskus:

Jeder von Ihnen, der Wirtschaft studiert oder studiert hat, kennt sicherlich diesen Namen: SAP, Systemanalyse und Programmentwicklung.

SAP entstand 1972 aus fünf ehemaligen IBM-Mitarbeitern, die es zur Unternehmensvision machten, Standard-Anwendungssoftware für die Echtzeitverarbeitung ("Real Time") zu entwickeln. Klickt euch doch kurz durch den Zeitstrahl, um die größten Errungenschaften kurz aufzuzeigen.

- Die Anfänge von SAP (1972 bis 1980)

Die Anfangsjahre von SAP waren wegbereitend für den Erfolg der Software. SAP ist modulbasiert, das heißt, es bietet verschiedene Module für verschiedene Funktionen an. In den Anfangsjahren entwickelte SAP ein System für die Finanzbuchhaltung, den Einkauf, die Bestandsführung, die Rechnungsprüfung, die Anlagenbuchhaltung und die Auftragsabwicklung.

Wie Sie sehen, waren die Entwickler fleißig und es zeichnete sich ein Markenzeichen heraus: die Integration aller Anwendungen eines Unternehmens.

- Die Ära SAP R/2 (1981 bis 1990)
SAP R/2 ist, was wir heute eine klassische ERP-Software nennen. SAP führte die Modularität fort und erweiterte sein Angebot auf die Funktionen der Kostenrechnung, der Materialwirtschaft, der Produktionsplanung und -steuerung, sowie der Personalwirtschaft.

- Echtzeitdaten immer und überall (2001 bis 2010)

Datenverarbeitung wird nun scheinbar schnittstellenfrei angeboten. Durch die Akquisitionen wird das Produktprogramm ausgebaut und der Grundstein für Cloud-Computing, mobile Geräte und In-Memory Computing gelegt. Es können dadurch die Daten nicht nur am festen Arbeitsplatz abgerufen werden.

- In-Memory-Technologie, Cloud-Computing und Geschäftsnetzwerke (2011 bis Heute)

Darüber hinaus werden Technologien wie Blockchain auf ihre Anwendungsfälle überprüft. Die Technologie des In-Memory Computing wird bereits auf der SAP HANA Plattform betrieben.

1.4.2 1974: Altair 8800

Eddy Dataskus:

Der Altair bestand aus dem von Ed Roberts selbst entwickelten S-100-Bus mit vier Steckplätzen für Erweiterungskarten, einer mit 2 MHz getakteten Intel 8080-CPU und 256 Byte Arbeitsspeicher. Das Gerät verfügte zunächst nicht über die heute übliche Peripherie, nicht einmal über eine Tastatur.

1.4.3 1975: Microsoft

Eddy Dataskus:

Sie werden sich sicher fragen, wieso wir im Raum der unternehmerischen Meilensteine so explizit den Altair erwähnen.

Abb. 5: Zeitstrahl Windows-Betriebssysteme

1.4.4 Drei Jahrzehnte Windows: Versionen im Überblick

Abb. 6: Windows- Versionen im Überblick

1.4.5 1976: Apple

Eddy Datakus:

und die Partnerschaft der beiden Firmengründer Steve Jobs und Steve Wozniak mit Ronald Wayne aufgelöst.

1.4.6 1981: IBM

Eddy Dataskus:

Bis Ende der 70er Jahre existierten ausschließlich Zentralrechner beziehungsweise Mainframes. Erst mit dem IBM 5150 tauchten die ersten Personal Computer auf, wie wir sie heute kennen.

Obwohl die Entwicklung des IBM 5150 in kürzester Zeit und unter Verwendung der preiswertesten verfügbaren Komponenten erfolgte, wurde er ein voller Erfolg.

Der IBM-PC war ebenso wie der Apple II erweiterbar. Durch Steckkarten, welche nachträglich in den Computer eingebaut wurden, konnte der Computer aufgerüstet werden.

1.4.7 1995: AltaVista

Eddy Dataskus:

Viele von Ihnen werden diesen Namen schon nicht mehr kennen oder auch nur einordnen können: AltaVista.

AltaVista wurde schlussendlich von Yahoo übernommen und 2013 eingestellt.

- **Meta-Tags**: Meta-Tags werden eingesetzt, um Metadaten in der Beschreibungssprache HTML (Hypertext Markup Language) zu kennzeichnen.

1.4.8 1998: Google

Eddy Dataskus:

Der Such-Algorithmus war jedoch anderen überlegen und so entwickelte sich Google zur bis heute führenden Suchmaschine. Die Google LLC umfasst darüber hinaus über andere Webanwendungen wie Google Maps oder Google Ads.

Das Unternehmen bekundet dabei, dass es Ziel sei "die Informationen dieser Welt zu organisieren und allgemein zugänglich und nutzbar zu machen". Google hat somit die Datenverarbeitung im Internet strukturiert und zu einem Geschäftsmodell entwickelt.

Abb. 7: Zeitstrahl Googles Errungenschaften
1.4.9 Bis Morgen!

Eddy Dataskus:

So wie es aussieht war es das erst einmal für Heute.

Denken Sie aber gerne darüber nach, wieso wir bei Google erst einmal einen Schlussstrich ziehen. Sind in den letzten 20 Jahren "große Player" hinzugekommen, die maßgebliche Erfindungen entwickelt haben? Stellen Sie sich bei Beantwortung die Frage, ob es nicht vielmehr Nutzer sind, die das Internet als Erweiterung des Geschäftsmodells betrachten.

Morgen beschäftigen wir uns dann mit den Zahlensystemen und der Informationsdarstellung in einem anderen Gebäude.

Also bis Morgen in alter Frische!
2 Zahlensysteme und Informationsdarstellung

2.1 Zahlensysteme

2.1.1 Einleitung

Eddy Dataskus:

Guten Morgen!

2.1.2 Was sind Zahlensysteme?

Eddy Dataskus:

 Können Sie die römische Uhr lesen? Nein? Dann lassen Sie uns doch zunächst in diesem Seminarraum Platz nehmen. Hier kann ich Ihnen verdeutlichen,

1. was Zahlensysteme sind und,

2. welche Zahlensysteme wir unterscheiden können.

Heutzutage ist die Nutzung von Stellenwertsystemen üblich. Im Anschluss werden Ihnen die folgenden Stellenwertsysteme näher erläutert:

- Dezimalsystem
- Binärsystem
- Hexadezimalsystem

Folgen Sie mir bitte, Sie werden Gelegenheit bekommen die Stellenwertsysteme besser zu verstehen, wenn Sie selbst Hand anlegen dürfen.
2.2 Stellenwertsysteme

2.2.1 Das Dezimalsystem

Eddy Dataskus:

Sie fragen sich jetzt sicher, was ein Handschlag mit dem Dezimalsystem zu tun haben soll, das zu den eben erwähnten Stellenwertsystemen gehört. Hier geht es aber vielmehr um die Finger unserer Hände, als den Handschlag. Vermutlich hat das Dezimalsystem seinen Ursprung dem Umstand zu verdanken, dass der Mensch zehn Finger hat, welche man zum Zählen einsetzen kann. Das Dezimalsystem oder auch Zehnersystem soll ursprünglich aus Indien stammen. Die 10 ist dabei die Basis und es werden die Ziffern 0 (null) bis 9 (neun) verwendet.

Unser Beispiel hier ist die Zahl 1584, schauen wir uns die Berechnung Schritt für Schritt an:

2. Jeder Stelle werden aufsteigende Zehnerpotenzen zugeordnet, beginnend mit 0 (null).
4. Letztendlich können wir somit das Ergebnis durch Addition berechnen: 1584.

<table>
<thead>
<tr>
<th>Stellenwerte</th>
<th>1</th>
<th>5</th>
<th>8</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Stellenwerte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Stellen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2. Zehnerpotenzen</td>
<td>10^3</td>
<td>10^2</td>
<td>10^1</td>
<td>10^0</td>
</tr>
<tr>
<td>3. Gewichtung der Potenzen</td>
<td>1×10^3</td>
<td>5×10^2</td>
<td>8×10^1</td>
<td>4×10^0</td>
</tr>
<tr>
<td>4. Ergebnis</td>
<td>= 1000</td>
<td>= 500</td>
<td>= 80</td>
<td>= 4</td>
</tr>
</tbody>
</table>

Abb. 9: Beispiel für die Funktionsweise des Dezimalsystems
2.2.2 Das Binärsystem

Eddy Dataskus:

1. Zunächst ermitteln wir wieder die Stellen unserer Zahl: Hier sind es vier Stück: 1 1 0 1.
4. Die daraus resultierenden Ergebnisse werden addiert und ergeben eine Dezimalzahl!

<table>
<thead>
<tr>
<th>Stellenwerte</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stellen</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2. Zweierpotenzen</td>
<td>2^3</td>
<td>2^2</td>
<td>2^1</td>
<td>2^0</td>
</tr>
<tr>
<td>3. Gewichtung der Potenzen</td>
<td>$1 \cdot 2^3$</td>
<td>$1 \cdot 2^2$</td>
<td>$0 \cdot 2^1$</td>
<td>$1 \cdot 2^0$</td>
</tr>
<tr>
<td>4. Ergebnis</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

= 14d

Abb. 10: Beispiel für die Funktionsweise des Binärsystems

2.2.3 Das Hexadezimalsystem

Eddy Dataskus:

Kommen wir nun zum letzten Stellenwertsystem, dass ich Ihnen zeigen möchte: Das Hexadezimalsystem.
Das Hexadezimalsystem hat die Basis 16 und besteht demzufolge aus einer Kombination der Ziffern 0 (null) bis 9 (neun), sowie aus den Buchstaben A bis F.

Das Hexadezimalsystem wird neben dem Binärsystem (Basis 2) und dem Oktalsystem (Basis 8) in der Computertechnik verwendet, um eine knappere und übersichtlichere Notierung zu gewährleisten. Dies ist ein deutlicher Vorteil gegenüber dem Dezimalsystem.

Zur Verdeutlichung möchte ich auch hier wieder ein Beispiel geben.

<table>
<thead>
<tr>
<th>0. Stellenwerte</th>
<th>2</th>
<th>9</th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stellen</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2. Sechzehner-Potenzen</td>
<td>16³</td>
<td>16²</td>
<td>16¹</td>
<td>16⁰</td>
</tr>
<tr>
<td>3. Gewichtung der Potenzen</td>
<td>2 * 16³</td>
<td>9 * 16²</td>
<td>15 * 16¹</td>
<td>11 * 16⁰</td>
</tr>
<tr>
<td>4. Ergebnis</td>
<td>8192</td>
<td>2304</td>
<td>240</td>
<td>11</td>
</tr>
</tbody>
</table>

= 10747d

Abb. 11: Beispiel für die Funktionsweise des Hexadezimalsystems

Wir haben also dieses Mal Zahlen: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 und Buchstaben: A, B, C, D, E, F.

Die Buchstaben stehen dabei für die Zahlen

- A = 10,
- B = 11,
- C = 12,
- D = 13,
- E = 14 und
- F = 15.

Unser Beispiel hier ist die Zahl 29FBh, schauen wir uns die Berechnung Schritt für Schritt an:

2. Jeder Stelle werden Sechzehner-Potenzen von rechts nach links zugeordnet, beginnend mit 0 (null).

4. Letztendlich können wir somit das Ergebnis durch Addition berechnen: 10747d.

2.3 Übungsaufgaben Stellenwertsysteme

2.3.1 Sie sind an der Reihe!

Eddy Dataskus:

2.3.2 Testaufgaben zum Umrechnen

- Rechnen Sie die Binärzahl 1010_b in das Dezimalsystem um.
- Rechnen Sie die Dezimalzahl 14_d in eine Binärzahl um.
- Rechnen Sie die Hexadezimalzahl ABCD_h in das Dezimalsystem um.
- Rechnen Sie die Dezimalzahl 49068_d in eine Hexadezimalzahl um.

2.4 Informationsdarstellung

2.4.1 Digitale Signalverarbeitung mit dem Binär-Code

Eddy Dataskus:

Ich hoffe, Sie konnten alle Übungsaufgaben erfolgreich abschließen!

Nachdem Sie nun Profis in den Stellenwertsystemen sind, möchte ich Sie nun einladen, ein Anwendungsfeld des Binärsystems kennenzulernen: Den Binär-Code und die digitale Signalverarbeitung. Der Binär-Code übernimmt eine zentrale Rolle bei der Verarbeitung digitaler Signale, mit denen heutige Computer arbeiten. Dahingehend haben Sie sich si-

2.4.2 Warum wir digitale Signale benutzen

2.4.3 8 Bit ergeben 1 Byte

Eddy Datakus:

- ein Lichtschalter mit den Funktionen "an" und "aus",
- der Schaltzustand eines Transistors mit "geringem" oder "hohem" Widerstand und
- das Vorhandensein einer Spannung, die größer oder kleiner als ein vorgegebener Wert ist.

Je mehr Bit man hat, desto mehr Zustände lassen sich beschreiben. Mit n Bit lassen sich 2^n Zustände beschreiben. Fasst man 8 Bit (2^8 = 256 Zustände) zusammenhält man 1 Byte.

Aus der Zusammenfassung von 8 Bit(Schaltern) ergibt sich ein Byte (Schalter-block). Mehrere Bit können zu einer Einheit zusammengefasst werden. Werden 8 Bit zusammengefasst, wird von 1 Byte (Binary term) gesprochen.1 Byte besteht also aus 8 einzelnen Bit, die jeweils 2 Zustände annehmen können (0 oder 1).

2.4.4 Vom Nummerncode zu Schriftzeichen: ASCII

Eddy Dataskus:

Nun möchte ich mit Ihnen einen kleinen Versuch starten:

- Öffnen Sie ein Textdokument wie MS Word oder LibreOffice.
- Halten Sie die ALT-Taste gedrückt und geben Sie folgende Zahlenreihenfolge auf ihrem Nummernblock ein: **169**.

2.4.5 ASCII-Codierung

Eddy Dataskus:

Ich stelle Ihnen als PDF eine vollständige Liste als Download zur Verfügung.

2.4.6 Der Unicode: Alle Schriften vereint

Eddy Datakus:

2.4.7 Bild-Codierung mit Code-Tabelle

Eddy Datakus:

2.4.8 Vielen Dank für Ihre Aufmerksamkeit!

Eddy Dataskus:

Liebe Museumsbesucher,

vielen Dank, dass Sie mich auf dieser Reise durch die Geschichte der Datenverarbeitung begleitet haben. Ich hoffe Sie hatten auch am zweiten Seminar-Tag viel Spaß und Sie konnten nützliche Erkenntnisse gewinnen. Der nächste Seminar-Tag in meinem Museum dreht sich rund um die Entstehung des Internet.

Schauen Sie gerne vorbei!

2.4.9 Abschlusstest 1

Testen Sie Ihr Wissen. Kreuzen Sie dazu die richtigen Antwortmöglichkeiten an.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Frage</th>
<th>Richtig</th>
<th>Falsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In wie vielen Zuständen kann sich eine Einheit aus 2 Bit befinden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wie viele Bit sind 3 Byte?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wie viele Zustände kann ein Bit annehmen?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Bit kann 16 Zustände haben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Bit kann 2 Zustände haben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Bit kann 8 Zustände haben.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Was können 2 Byte darstellen?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eine Zahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Wort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nichts von beidem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ein Byte ist die kleinste Informationseinheit in der Datenverarbeitung.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ASCII ist...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... ein Code zur Zeichendarstellung.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... eine Programmiersprache</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... ein 8-Bit Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... ein 256-Bit-Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mit Unicode können im Vergleich zum ASCII...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... weniger Zeichen dargestellt werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... genauso viele Zeichen dargestellt werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... mehr Zeichen dargestellt werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>In der Computer-Technik wird gewöhnlich im Dezimalsystem gerechnet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mit einem Bit kann...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... ein Wort dargestellt werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... eine Zahl dargestellt werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... der Zustand „An“ oder „Aus“ dargestellt werden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Der Unicode ist ein 16-Bit Code.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Abschlusstest 1
Anhang: Lösungen der Abschlusstests

Lösungen Abschlusstest 1

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Frage</th>
<th>Richtig</th>
<th>Falsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In wie vielen Zuständen kann sich eine Einheit aus 2 Bit befinden?</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Wie viele Bit sind 3 Byte?</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wie viele Zustände kann ein Bit annehmen?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Bit kann 16 Zustände haben.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Bit kann 2 Zustände haben.</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>• Ein Bit kann 8 Zustände haben.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Was können 2 Byte darstellen?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Eine Zahl</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Wort</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beides</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nichts von beidem</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5</td>
<td>Ein Byte ist die kleinste Informationseinheit in der Datenverarbeitung.</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>ASCII ist...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ... ein Code zur Zeichendarstellung.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ... eine Programmiersprache</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ... ein 8-Bit Code</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ... ein 256-Bit-Code</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mit Unicode können im Vergleich zum ASCII...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ... weniger Zeichen dargestellt werden.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ... genauso viele Zeichen dargestellt werden.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ... mehr Zeichen dargestellt werden.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>In der Computer-Technik wird gewöhnlich im Dezimalsystem gerechnet.</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Mit einem Bit kann…

- … ein Wort dargestellt werden.
- … eine Zahl dargestellt werden.

Der Unicode ist ein 16-Bit Code.

Tab. 3: Lösungen Abschlusstest 1
Reihe: Arbeitspapiere Wirtschaftsinformatik (ISSN 1613-6667)

Bezug: https://wi.uni-giessen.de

Herausgeber: Prof. Dr. Axel Schwickert
Prof. Dr. Bernhard Ostheimer
c/o Professur BWL – Wirtschaftsinformatik
Justus-Liebig-Universität Gießen
Fachbereich Wirtschaftswissenschaften
Licher Straße 70
D – 35394 Gießen
Telefon (0 64 1) 99-22611
Telefax (0 64 1) 99-22619
eMail: Axel.Schwickert@wirtschaft.uni-giessen.de
https://wi.uni-giessen.de

Ziele: Die Arbeitspapiere dieser Reihe sollen konsistente Überblicke zu den Grundlagen der Wirtschaftsinformatik geben und sich mit speziellen Themenbereichen tiefergehend befassen. Ziel ist die verständliche Vermittlung theoretischer Grundlagen und deren Transfer in praxisorientiertes Wissen.

Quellen: Die Arbeitspapiere entstehen aus Forschungs-, Abschluss-, Studien- und Projektarbeiten sowie Begleitmaterialien zu Lehr-, Vortrags- und Kolloquiumsveranstaltungen der Professur BWL – Wirtschaftsinformatik, Prof. Dr. Axel Schwickert, Justus-Liebig-Universität Gießen sowie der Professur für Wirtschaftsinformatik, insbes. medienorientierte Wirtschaftsinformatik, Prof. Dr. Bernhard Ostheimer, Fachbereich Wirtschaft, Hochschule Mainz.

Hinweise: Wir nehmen Ihre Anregungen zu den Arbeitspapieren aufmerksam zur Kenntnis und werden uns auf Wunsch mit Ihnen in Verbindung setzen.

Falls Sie selbst ein Arbeitspapier in der Reihe veröffentlichen möchten, nehmen Sie bitte mit einem der Herausgeber unter obiger Adresse Kontakt auf.

Informationen über die bisher erschienenen Arbeitspapiere dieser Reihe erhalten Sie unter der Web-Adresse https://wi.uni-giessen.de/